Corrosion à haute température

La corrosion à haute température est la dégradation des métaux par l'environnement à haute températures ; c'est un phénomène complexe qui a lieu dans les moteurs, chaudières et réacteurs.


Catégories :

Corrosion - Réaction chimique - Chimie générale

Recherche sur Google Images :


Source image : fr.wikipedia.org
Cette image est un résultat de recherche de Google Image. Elle est peut-être réduite par rapport à l'originale et/ou protégée par des droits d'auteur.

Page(s) en rapport avec ce sujet :

  • Corrosion à haute température de quelques aluminiures de fer B2. Échantillon oxydé, avec rupture locale de la couche d'oxyde, révélant des pores et un... (source : deuns.chez)
  • La dégradation qui prend place au voisinage de l'interface métal / oxyde... pour des températures de 800 à 1100 K à une corrosion par des mélanges gazeux O2, ... (source : books.google)

La corrosion à haute température est la dégradation des métaux par l'environnement à haute températures (supérieure à 500 °C)  ; c'est un phénomène complexe qui a lieu dans les moteurs, chaudières et réacteurs. Les gaz de combustion ont en effet une composition complexe du fait de la composition du combustible et de l'air : N2, O2, CO2 et H2O évidemment, mais fréquemment aussi S2, SO2, Cl2, NaCl, et divers oxydes (V2O5... ).

On peut distinguer alors deux type de dégradations :

Dans certaines situations, on a cohabitation de métaux solides et de métaux fondus (la température est par conséquent obligatoirement élevée). C'est par exemple le cas de la fonderie ; mais les métaux fondus sont quelquefois utilisés comme fluides, comme par exemple le sodium dans la centrale nucléaire Superphénix. Ces situations entraînent des phénomènes de corrosion spécifiques.

La corrosion sèche (oxydation à haute température)

Quand on met un métal en présence de dioxygène, ce dernier s'adsorbe (c'est-à-dire se fixe) sur la surface et réagit pour former une couche d'oxyde. À température ambiante, la diffusion dans le solide est négligeable ; soit la couche d'oxyde est compacte et protectrice (alumine sur l'aluminium ou chromine sur les aciers inoxydables) et le métal ne bouge pas, soit elle est poreuse ou non adhérente (rouille), et le métal se dégrade par une croissance de la couche d'oxyde au détriment du métal. Les mécanismes qui entrent en jeu sont la migration dans le milieu extérieur (diffusion, convection, champ électrique) et les réactions de surface.

Au-delà de 400 °C, la diffusion en phase solide, qui est activée thermiquement, entre en jeu, et même une couche compacte va pouvoir se dégrader (l'oxyde forme une croûte qui se craquèle).

Pour simplifier, l'étude suivante porte sur l'action du dioxygène seul.

Mécanisme de la dégradation

Occasionnellement, l'oxyde est volatil (cas par exemple du PtO2), ou bien est fragile, poreux, n'adhère pas au substrat. Dans ce cas, le mécanisme de dégradation est évident, le dioxygène réagit avec le métal pour former de l'oxyde et cet oxyde s'évapore ou s'écaille.

oxydation à haute température : mécanisme de dégradation d'une couche d'oxyde adhérente et compacte

Dans le cas d'un oxyde adhérent et compact, le mécanisme de la dégradation a été décrit par J. Bénard[1], [2]. La dégradation se fait en cinq étapes :

  1. adsorption et dissociation du dioxygène sur la surface du métal ;
  2. réaction entre les atomes d'oxygène adsorbés et le métal pour former des germes d'oxyde ;
  3. croissance latérale des germes jusqu'à la jonction, formation d'un film continu ;
  4. croissance du film d'oxyde en épaisseur par diffusion dans le film ;
  5. rupture du film d'oxyde par les contraintes induites par sa croissance et les défauts.
micrographie électronique montrant la rupture d'une couche d'oxyde

Équilibre thermodynamique : l'oxyde, la forme stable du métal

diagramme d'Ellingham-Richardson


Notons M l'atome de métal, quelle que soit sa nature (Fe, Ni, Al, Cr, Zr…), et notons MnO2 l'oxyde correspondant ; les cœfficients ont été choisis pour simplifier l'écriture en considérant la réaction avec une molécule de dioxygène entière, cela peut être Fe2O3, Al2O3, Cr2O3 (n = 4/3), Fe3O4 (n = 3/2), FeO, NiO (n = 2), ZrO2 (n = 1)... L'enthalpie molaire partielle (l'énergie libre de Gibbs) ΔGMnO2 de la réaction d'oxydation

nM + O2 → MnO2

s'écrit :

ΔGMnO2 = ΔG0MnO2 + RT·lnPO2

PO2 est la pression partielle de dioxygène exprimée en atmosphères, R est la constante des gaz parfaits et T est la température absolue exprimée en kelvin (K). L'enthalpie est représentée dans le diagramme d'Ellingham-Richardson, où on trace ΔG0 (T) [3], [4], [5].

Le diagramme est bâti en supposant l'équilibre thermodynamique, des phases solides pures (activités identiques à un), la fugacité du dioxygène égale à sa pression partielle, et que ΔG0 dépend linéairement de la température ; les ΔG se réfèrent à la réaction pour une mole de O2. L'oxydation ne peut avoir lieu que si

ΔGMnO2 < 0

soit

ΔG0MnO2 < -RT·lnPO2

Si on définit l'enthalpie libre du dioxygène

ΔGO2 = RT·lnPO2

et qu'on trace -ΔGO2 (T) dans ce diagramme, on obtient une droite passant par 0 ; l'intersection de cette droite et de la droite représentant ΔGMnO2 définit la zone de températures où l'oxyde est thermodynamiquement stable pour la pression partielle de dioxygène donnée. Pour les conditions habituelles, la forme stable des métaux est la forme oxydée.


Note : en toute rigueur, il faudrait noter «-RT·ln (PO2/P0)» où P0 est la pression permettant de définir ΔG0 (ou «pression normale»), en l'occurrence 1 atm.

Adsorption du dioxygène et formation des îlots d'oxyde

La molécule de dioxygène O2 se lie au métal puis se dissocie en deux atomes d'oxygène scindés. Les atomes d'oxygène occupent des sites d'adsorption préférentiels, généralement les sites ayant le plus grand nombre d'atomes de métal voisins. La répartition de ces sites dépend de la structure cristallographique de la surface, par conséquent surtout de l'orientation du cristallite (ou grain) [6], [7].

Densité de surface d'atomes du cristal selon l'orientation de la facette

Certains auteurs suggèrent que dans le cas d'alliages, les atomes se placent préférentiellement au voisinage des atomes les moins nobles, par exemple le fer dans le cas d'un alliage Fe-Al[8]. Ceci a trois conséquences :

Une partie de l'oxygène adsorbé se dissout dans le métal et diffuse (c'est-à-dire que les atomes d'oxygène se glissent entre les atomes du métal et progressent vers l'intérieur de la pièce), ce qui occasionnellement peut conduire à une oxydation interne (cf. plus loin).

Croissance latérale des îlots d'oxyde

Les îlots d'oxyde, particulièrement minces, croissent latéralement jusqu'à se joindre. Cette croissance se fait par diffusion de surface[10] ; la vitesse de diffusion dépend par conséquent de la densité atomique de la surface. Ainsi, selon l'orientation cristalline du substrat, certains germes d'oxyde croissent plus vite que d'autres. Le film d'oxyde d'origine peut par conséquent présenter une texture (orientation cristallographique préférentielle).

Croissance du film d'oxyde en épaisseur

Quand la couche est adhérente et compacte, l'oxyde isole désormais le métal de l'atmosphère. Les atomes de dioxygène s'adsorbent par conséquent sur l'oxyde. Quand l'oxyde est compact et adhérent, on peut envisager deux mécanismes de croissance :

On peut aussi avoir une combinaison des deux, avec l'oxyde qui se forme au milieu de la couche d'oxyde.

On considère fréquemment que l'oxyde MnO2 est un composé ionique O2-/Mm+, m respectant la neutralité des charges (m×n = 4)  ; la liaison oxyde est en fait plus complexe, mais cette approximation simplifie les calculs de diffusion. La diffusion des espèces se fait par conséquent aussi sous forme ionique, principalement sous forme interstitielle ou lacunaire ; la présence de défauts d'antisites OMm+n' et MOm+n dans l'oxyde n'est pas envisagée du fait de l'énergie qu'il faudrait pour les créer (on utilise la notation de Kröger et Vink, recommandée par l'Iupac).

Croissance vers l'extérieur

Dans le cas d'une diffusion vers l'extérieur, les ions métalliques partant laissent derrière eux des lacunes. On a par conséquent une contraction de la couche superficielle du métal qui crée des contraintes. Quand la concentration en lacune est suffisante, elles se condensent pour former des pores (principe comparable à la précipitation). On constate par conséquent souvent des pores à l'interface métal/oxyde. Cette formation de pores provoque une relaxation des contraintes, mais donne lieu à des concentrations de contraintes.

La croissance vers l'extérieur peut se faire de deux manières :

Croissance vers l'intérieur

Dans le cas d'une diffusion vers l'intérieur, les ions d'oxygène s'«incrustent» dans le métal et créent par conséquent une dilatation, qui génère des contraintes.

La croissance vers l'extérieur peut se fait de la manière suivante :

  1. à l'interface métal/oxyde, les atomes du métal réagissent avec les ions O2- de l'oxyde (le métal s'oxyde), laissant des lacunes mais aussi des électron libres ;
    nMM (métal) + 2OO (oxyde) → 2 nMM (métal) + 2OO (oxyde) + VO + me'
    en quelque sorte, les ions oxygène de l'oxyde OO jouent le rôle de catalyseur ;
  2. les lacunes et les électrons diffusent vers l'extérieur, ainsi qu'à l'interface oxyde/gaz, des molécules du gaz se diminuent (captent les électron) pour devenir des ions O2- et passent dans l'oxyde
    O2 + 4e'→ 2O2-
    O2- + VO (oxyde) → OO (oxyde)

En quelque sortes, l'oxydation du métal crée un déficit d'ion oxyde dans la couche, qui «aspire» les atomes du gaz.

L'autre situation (diffusion d'un atome ou d'un ion d'oxygène en intersticiel) est peu probable, l'oxygène étant un «gros» atome.

Cinétique d'oxydation

Cinétique d'adsorption

L'adsorption du dioxygène peut se décrire par deux phénomènes : en premier lieu une physisorption : la molécule O2 se lie au métal par une force de van der Waals, de manière réversible, puis une chimisorption, réaction thermiquement activée

O2 + <> = <2-s>> physisorption
<2-s>>+ <> = 2<> dissociation (chimisorption)

«s» sert à désigner un site d'adsorption, et les doubles crochets <<...>> indiquent que l'espèce est à l'interface métal/gaz. Plusieurs modèles décrivent la cinétique d'adsorption isotherme :

  • adsorption monocouche : Hill, Hill et Everett, Langmuir
  • adsorption multicouche : BET (Brunauer, Emmet et Teller), théorie de la lame (Frenkel, Hasley et Hill), potentiel Polyani.

mais ils sont rarement utilisés dans ce cadre. En effet, dans notre cas, nous pouvons retenir les hypothèses suivantes :

  • la diffusion dans le gaz est rapide et n'est pas un facteur limitant ;
  • on est presque instantanément à l'équilibre adsorption ↔ désorption, les processus de d'adsorption étant thermiquement activés.

Si le facteur limitant du phénomène est une réaction de surface, on a alors une cinétique linéaire : étant à l'équilibre, l'apport en gaz sur la surface et la quantité de matière se désorbant sont constantes, par conséquent les concentrations en réactants sont constantes. Par conséquent, la quantité de matière réagissant est déterminée par la quantité de matière arrivant sur la surface et en partant. Ce flux étant constant (équilibre), on en conclut que la réaction suit une cinétique linéaire :

mox = kl. t

mox est la masse d'oxyde, kl le cœfficient linéaire d'oxydation et t est le temps.

La cinétique d'adsorption joue dans les cas où on a une couche d'oxyde non protectrice (poreuse ou non adhérente, ou bien oxyde volatil)  : si la couche est protectrice, la diffusion dans la couche d'oxyde est bien plus lente que l'adsorption et c'est par conséquent la cinétique de diffusion qui contrôle le phénomène. Cependant, la cinétique d'adsorption contrôle les premières minute de l'oxydation, au cours de la germination de l'oxyde et la croissance latérale des grains ; certains auteurs ont relevé une cinétique linéaire dans les premières minutes de l'oxydation même dans le cas d'un oxyde compact et adhérent[11].

Couche adhérente et compacte

La formation d'origine du film d'oxyde ne dépend que de l'alimentation en gaz de la surface, et est par conséquent globalement linéaire. Une fois ce film constitué, il forme une barrière entre le métal et le gaz, à condition que ce film soit adhérent et compact. Il y a par conséquent un ralentissement de la corrosion.

Globalement, la corrosion se fait par diffusion à travers l'oxyde. Plus le film est épais, plus le temps de diffusion est long. Une analyse rapide montre que l'épaisseur e du film d'oxyde, et par conséquent la prise de masse de la pièce, fluctue comme la racine carrée du temps :

e \propto \sqrt{t} ;
m_{ox} \propto \sqrt{t}.

Le premier modèle à cinétique parabolique a été proposé par Tamman en 1920.

En 1933, Carl Wagner a fait une analyse plus fine et obtient lui aussi une cinétique parabolique. Il pose comme hypothèses que :

  • la migration fait intervenir, hormis la diffusion par sauts aléatoires, l'effet du gradient de potentiel chimique mais aussi l'effet du champ électrique local créé par la répartition des charges ;
  • l'oxyde a une composition proche de la stœchiométrie ;
  • à tout instant, l'oxyde est localement à l'équilibre chimique ;
  • le circuit est ouvert, c'est-à-dire que le courant électrique global est nul et par conséquent que les flux d'espèces chargées sont couplés.

La théorie de Wagner présente l'intérêt de relier la constante de vitesse (constante de proportionnalité entre l'épaisseur et la racine carrée du temps) aux paramètres fondamentaux du matériau (comme les cœfficients de diffusion). Dans les faits, cela donne d'assez mauvais résultats, les hypothèses de Wagner étant trop éloignées de la réalité (il ignore surtout le rôle des joints de grain dans la diffusion).

Mais on constate cependant bien expérimentalement une croissance en racine carrée du temps.

Rupture de la couche ou couche poreuse

Quand la couche se rompt, à cause des contraintes générées, le gaz accède directement à une surface importante non-oxydée. On constante par conséquent une accélération de la prise de masse, une rupture de la loi quadratique.

Quand la couche est particulièrement fragile et se rompt ou se décolle en permanence, ou bien quand l'oxyde est poreux, voir volatil, rien ne s'oppose à l'oxydation, la loi est par conséquent linéaire.

La corrosion chaude (fluxage)

La corrosion chaude, ou fluxage, est la corrosion par des sels fondus.

En effet, dans les brûleurs, l'air est prélevé à l'extérieur et peut contenir du chlorure de sodium (embruns). D'autre part, le combustible lui-même peut contenir des espèces sels. Les métaux peuvent se dissoudre dans ces sels (voir par exemple Perle fondue).

La corrosion par métaux fondus

Il y a des métaux fondus en métallurgie (coulées) qui peuvent être utilisés comme fluides, par exemple le sodium fondu est utilisé comme liquide caloporteur dans les surgénérateurs.

Ces métaux fondus peuvent former un environnement corrosif pour les matériaux environnants (canalisations, cuves, lingotières…).

Constantes physiques

  • constante des gaz parfaits : R = 8, 314 472 J·mol-1·K-1 ± 1, 5·10-5 J·mol-1·K-1

Notes et références

  1. L'Oxydation des métaux, J. Bénard et coll., éd. Gauthier-Villars, 1962, p82
  2. High Temperature Corrosion, P. Kofstad, éd. Elsevier, 1988, p3
  3. High Temperature Corrosion, P. Kofstad, éd. Elsevier, 1988, p5
  4. Corrosion 5è éd., vol. 13 de ASM Handbook, éd. ASM International (American Society for Materials), 1996, p63
  5. L'Oxydation des métaux, J. Bénard et coll., éd. Gauthier-Villars, 1962, p272
  6. L'Oxydation des métaux, J. Bénard et coll., éd. Gauthier-Villars, 1962, p53
  7. High Temperature Corrosion, P. Kofstad, éd. Elsevier, 1988, p134
  8. High Temperature Corrosion, P. Kofstad, éd. Elsevier, 1988, p136
  9. High Temperature Corrosion, P. Kofstad, éd. Elsevier, 1988, p137
  10. Métallurgie, du minerai au matériau, J. Philibert et coll., éd. Masson, 1998, p417
  11. Guidelines for methods of testing and research in high temperature corrosion, éditeurs H. J. Grabke et D. B. Meadowcroft, vol. 14 de European Federation of Corrosion Publications, éd. The Institute of Materials, 1995

Voir aussi

  • calcination
  • Bibliographie

    • Corrosion 5e éd., vol. 13 de ASM Handbook, éd. ASM International (American Society for Materials), 1996
    • L'Oxydation des métaux, J. Bénard et coll., éd. Gauthier-Villars, 1962
    • Guidelines for methods of testing and research in high temperature corrosion, éditeurs H. J. Grabke et D. B. Meadowcroft, vol. 14 de European Federation of Corrosion Publications, éd. The Institute of Materials, 1995
    • High Temperature Corrosion, P. Kofstad, éd. Elsevier, 1988
    • Corrosion et chimie de surfaces des métaux, D. Landolt, vol. 12 de Traité des matériaux, éd. Presses Polytechniques et Universitaires Romandes, 1993
    • Diffusion in Solids and High Temperature Oxidation of Metals, éditeur J. Nowotny, éd. Trans Tech Publications, 1992
    • Métallurgie, du minerai au matériau, J. Philibert et coll., éd. Masson, 1998

    Recherche sur Amazone (livres) :



    Principaux mots-clés de cette page : oxydes - métal - corrosion - conséquent - diffusion - atomes - couche - oxydation - gaz - dioxygène - croissance - surface - métaux - adsorption - vers - interface - film - cinétique - oxygène - température - extérieur - forme - ions - high - temperature - fondus - réactions - constante - dégradation - mécanisme -

    Ce texte est issu de l'encyclopédie Wikipedia. Vous pouvez consulter sa version originale dans cette encyclopédie à l'adresse http://fr.wikipedia.org/wiki/Corrosion_%C3%A0_haute_temp%C3%A9rature.
    Voir la liste des contributeurs.
    La version présentée ici à été extraite depuis cette source le 30/11/2010.
    Ce texte est disponible sous les termes de la licence de documentation libre GNU (GFDL).
    La liste des définitions proposées en tête de page est une sélection parmi les résultats obtenus à l'aide de la commande "define:" de Google.
    Cette page fait partie du projet Wikibis.